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Abstrad. A matment for the phonoriton problem based on the model introduced by Wang 
and Birman is proposed. If is shown that the model describes an inleracting phnnorilon system 
rather than a free one. The phonoriton spectrum is then calculated by using the Malsubara Green 
function technique. It is seen from the result that he phonorilon-phonorilon interaction n-ws 
the gap in comparison with he gap in lhe specr” of free phonoritons obtained by Wan% and 
Bman. The damping of phanoriton states due to ule interaction is explicitly calculated as well. 

1. Introduction 

Although excitons, photons and phonons are well known elementary excitations in 
semiconductors, to date the properties of a system of the mentioned interacting excitations 
have still attracted great attention, experimentally as well as theoretically. In 1982 Ivanov 
and Keldysh [ I ]  suggested that if the crystal is excited by a strong monochromatic beam of 
light then the exciton-phonon interaction should lead to the formation of a new elementary 
excitation called a phonoriton. The mechanism of the formation of phonoritons and their 
properties have been discussed in many works by the Keldysh group [l-51. Although 
some experiments have been cmied out to show the existence of phonoriton states through 
photoluminescence [6,7] so far there has been no direct evidence on the existence of such 
states except two other experimental works relating to phonoritons implicitly [8,9]. 

Theoretically, the physical picture of the formation of phonoritons has recently been 
clarified by Wang and Birman in a very simple way [lo]. In order to understand the 
properties of phonoritons in more detail, however, further studies are required since in the 
above-mentioned work many approximations were used. One of them is the replacement 
of the creation and annihilation operators for a polariton at pump mode by their quantum 
average values. Such a semiclassical approximation may ignore many interesting properties 
of phonoritons, which relate to the quantum nature of the excitons. 

In this work we propose a simple approach, which enables us to acquire some 
information omitted in the above-mentioned approximation. The paper is organized as 
follows. Section 2 is devoted to the description of the model. Our approach is developed 
in section 3. The spectrum and the damping of the phonoriton are calculated in section 4, 
based on the Hamiltonian obtained in section 3 by using the Matsubara Green function 
technique. Section 5 is devoted to discussion and the conclusion. We use the unit system 
withh = c = 1. 
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2. The model 

We consider a system of interacting excitons, photons and longitudinal phonons described 
by the following Hamiltonian [ 11 
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where up ,  b,. cp  (U:, b,', c,') are annihilation (creation) operators for an exciton, a photon 
and a phonon with momentum p, respectively; m,", and Q ,  are the energy of the 
exciton, photon and phonon, respectively. Here WO" is the exciton energy at p = 0, e, 
is the background dielectric constant of the semiconductor, m* is the effective mass of an 
exciton. Q, is the photon-exciton interaction and M(p - q )  is the matrix element of the 
exciton-phonon interaction. 

Wang and Buman [lo] showed that if a highly intense beam of light with frequency 
enters the system and if the contributions of the two branches of polaritons can be 

considered separately (below we consider the lower branch) then the Hamiltonian given by 
[l] can be approximated by 

in which B, (B:) and w r '  are the annihilation (creation) operators and the energy of the 
polariton in the lower branch with momentum p, respectively. HAS and Hs are called the 
anti-Stokes and Stokes scattering Hamiltonians. f i ( p  - ko) is now the matrix element of 
the polariton-phonon interaction. 

In order to solve the problem with Hamiltonian (3) Wang and Birman replaced B i  and 
Bx, by their quantum average values in a coherent state of polariton mode ko. The quantum 
nature of such polaritons is, therefore, omitted in the consideration. In the next section we 
shall develop a simple approach that enables us to understand the effect of the quantum 
nature of the excitons in mode b. 

3. Phonoriton-phonoriton interaction 

Instead of replacing BL and Bx,  in HAs and Hs simply by their quantum averages (B$)cOh 
and (B&h in coherent slates we use the following identities: 

( 5 )  BL = ( B i )  + BL - (BZ)  Bx, = ( B x , )  + BX, - ( B x , )  



Using the same arguments as in [lo] we may study the spectra around anti-Stokes and 
Stokes frequencies individually. For illustration we shall consider here only the anti-Stokes 
specmm. Paying attention to the fact that the number Nb of polaritons of pump mode is 
assumed to be fixed we should introduce into consideration the following Hamiltonian: 

& = H Z )  + HEt (7) 

where 

where 

kE = i C M ( p  - ko) {BbB;cp-b - BpBbcp-b + +  I 
P 

t i C f i ( p  -M{ (~ . i 'p~~;-~  - B , + ( B ~ ) C ~ - ~ }  (11) 
P 

and /I is the chemical potental and its value is determined by the following condition: 

(B:B& = N ~ .  
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The Hamiltonian HE’ given by (8) can be easily diagonaljzed by a Bogoliubov 
transformation. Expressing Bp and cp-b in terms of a new operators D , ( p )  with p = 1,2 
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as follows: 

with 

where 

W/p:(p) = l ( m W ’  - ~ + Q p - ~ ) j T ~ ( ( ~ p ” ’ - f i - ~ p - ~ ) Z + 4 ~ Z ( p - k ~ ) N ~ ) ‘ ’ z  - (14) 

we obtain 

HE) = W ~ ) ( P ) ~ ~ ( P ) D ~ ( P )  + (mb - f i )BLBb.  (15) 
P.P=It2 

Equation (15) enables us to explain D:(p) and D,(p )  as the creation and annihilation 
operators for the phonoriton in branch p and with momentum p .  

Substituting (12) into (111, we can express HZ in terms of phonoriton operators, as 
follows: 

HZ = MPV@ - ko)NFDf i (p )D: (p )  - Mpdp - k , , ) B z D ~ ( p ) D : ( p )  + HC (16) 
P . W  P . W  

where 

MP& - ko) = i B ( p  - ko)u,(p)v:(p).  (17) 

Equation (16) enables us to regard HC as the Hamiltonian describing the phonoriton- 
phonoriton interaction and therefore we may say that the quantum nature of the excitons at 
mode k = ko leads to the interaction between the phonoritons. 

4. The spectrum and damping of phonoritons 

The interaction between phonoritons (16), as expected in any system with interaction, should 
give rise to the damping of phonoritons. as well as change in their spectrum. In order to 
calculate these we use the Matsubara Green function technique [ 111, namely we consider 
the following Green functions with imaginary time T: 

Fp& 5) = - ( T ~ D : ( T ) D ~ ( O ) )  G ( b ,  7 )  = - ( T Z B ~ ( ~ ) B ~ ( O ) ) .  (18) 
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The Fourier transformations of the corresponding free Green functions are 

F$)(k, io,) = 6,,(iw, - WF)(k))-' G(h ,  io,) = (io. - U$ + p)-' (19) 

where on = np-'n with n being an even integer number, f i  = ( l / k ~ T )  with k B  and T 
being the B o l t "  constant and temperature, respectively. The Fourier transformations 
of the Green function for the interacting phonoritons obey the following Dyson equation: 

~ , ( k ,  io.) = ~ , , ( k .  io,) = (io, - wf)(k) - ~ , ( k ,  iOn))-' (20) 

where C,(k,  io,) is the self-energy, and its diagrammatic expansion is of the following 
form: ,--. 

C,(k,io.) = A + A A + ... (21) 

in which the dashed and solid lines represent FCo)(k, io,) and G(k0, io,), respectively. The 
vertex stands for the interaction strength given by (17). 

In the lowest-order approximation the analytic expression corresponding to (21) is 

C , ( k  ion) = M,,(k - k o ) N Y  - IM,,,(k - kO)l*W(W$)(qd) 
"lql 

+ N ( o b  - fi))A(ql - k)(io, - WJy)(ql) - OX, + ,C-' (22) 

where 

The retarded Green function corresponding to (20) can be obtained by the analytic 
continuation io. + o + is , where E is a positive infinitesimal number [ 111. As a result 
we obtain 

~ , ( k , w )  = (U - W;"(R) - ~ , ( k ,  w + ic) +is)-' (23) 

where 

x,(k,w+is) = ~ , , ( k - b ) ~ r  - CIM,,,(~ - k o ) ~ ~ ~ ( w $ ) ( q l ) )  
YIP, 

+ N ( o b  - b)}A(qI - k)(o - WJp)(ql) - ob + f i  + is)-'. (24) 

To calculate the chemical potential constant p in (24), as stated above, we have to 
know ( B 2 B b ) p .  This quantity can be calculated through the retarded Green function 
G,(ko,w) of the polariton at mode ko. It can be easily seen that if we approximate 
G,(ko, o) N G;O)(ko, U )  then at low temperature T + 0, we have f i  = ob. Then the 
spectrum of the free phonoriton (14) coincides with the phonoriton spectrum (18) in [lOJ. 
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From (23) the spectrum and damping of phonoritons can be obtained by solving the 
following non-linear equation: 

w = W F ) ( k )  + M,,(k - k o ) N r  - P IM,,,(k - ko)l2(N(W$')(qi)) 
wq, 

+Nk, , l (o-  W;p)(qi))-'A(qi -k)+i*CIM,,,(k-ko)IZIN(W~p)(qi))  
"19, 

+ h J A ( q l  - k)S(w - w,")(qd) (25) 
where the Dirac identity l / ( x  + ic) = P / x  - ixS(x) has been used; P denotes the principal 
value of an integral under which this relation is used. Since the second, third and fourth 
terms in the right-hand side of (25) are small compared to the first one we can solve (25) 
by using the successive approximation method. To the first approximation we obtain the 
following expression for the phonoriton spectrum: 

W,(k)  W;)(k)  + M p P ( k  - k o ) N F  - IMPv(k - b ) I 2 [ N ( W J 0 ) ( k ) )  

+ N & ) ( W f ) ( k )  - W,!''(k))-' (26) 
and for the damping 

At low temperatures and for a sufficiently intense pump field we have 

N(U',(:(k)) << N b .  (29) 
Substituting (17) into (26) and (27) we obtain the following final result for the spectrum 
and the damping of the phonoriton: 

Wl (k)  = W y ' ( k )  - a 2 ( k  - b)Nb 
{(U,'"' - - Q-b)'+ 4 @ ( k  - k ~ ) N b } ' / ~  

fi4(k - b ) N i ( W F '  - uY' + ~ b )  

( (wr '  - ob - fix+,)' +4$(k - ko)N0)3/2(W,'~' - U,'"' + US) 
+ 

(30) M2(k - b)Nb 
W*(k) = W?)(k) + 

((UY' - Ub - stt-kJ2 + 4WYk - kO)Nb)'/Z 

nV &'(k - ko)Ni( -Wio)(k)  + f&+,)-'k' 1 - r z ( k )  - 
(2xI3 ((w,P"- OK, - Qx-& + 4 a 2 ( k  - ko)Nb)1/2 V r '  

where V,"' is the group velocity of the poiariton 
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Figure 1. The phonoriton dispersion curve in CdS al 
pump frequency w = 2500 mev. IC; = w,, -or :  
solid line, ow work, dotted tine, 1101 

Figure 2. The phonorilon dispersion curve in CdS ai 
pump frequency w = 2510 mev, W,, = W, - @: 
solid line, our work, dotted line, [IO] 

5. Conclusion 

As noted above, the phonoriton spectrum obtained in [lo] is simply the spectrum of the 
free phonoriton (14) in our treatment. From (30) one can see that due to the phonoriton- 
phonoriton interaction the upper phonoriton branch goes down while the lower one shifts up 
in comparison with the spectrum of the free phonoriton in [ 101. The gap between the two 
branches given by (30) is therefore smaller than that of free phonoritons. Namely, denoting 

AW(k)  = Wl(k)  - W2(k) AW“’(k) = W/’)(k) - WF’(k) 

we have 

as can be seen directly from (14). 
At the resonance, when U,””’ - wh = S2-b we have AW“(k) = Z f i ( k  - ko) Nb 

and AW(k)  = M ( k  - k ) N A p ,  i.e., AW(k)  = $AW@)(k) .  
In figures 1-4 we have plotted the phonoriton spectrum and its damping in CdS at the 

frequencies of a pump field near the exciton resonance 00 = 2500 meV and 2510 meV, 
respectively. The data used for calculation are adopted from [lo]: Nx, = IOzo 
@ - W, - m y ,  l=, = r,/my. For comparison, in figures 1 and 2, besides our curves 
(solid lines) we have plotted the phonoriton dispersion calculated by using the approximation 

112 

p .- 
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Figure 3. The damping of phonoritons in CdS E y r e  4. The damping of phonoritons in CdS 
due to the phonorilon-phonoriton inleraction al pump due to lhe phonoriton-phonoriton inlemction a1 pump 
frequency og = 2500 mev, F,, = r,,/.;. frequency og = 2510 mev, P, = r,/.q, 

in [IO] (dotted lines). It is clearly seen from these figures that the interactions between 
phonoritons have quite an important influence on their spectrum, narrowing the gap of the 
phonoritons. Perhaps to a certain extent this explains the difficulty in finding phonoritons 
experimentally. 

Finally we would like to note that it is the interaction between phonoritons that leads 
to the damping of the phonoritons. The phonoriton state in [IO] is only a free one in our 
treatment, therefore it will have no damping unless one includes it phenomenologically. 
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